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Abstract

We consider the model problem where a curve in R3 moves according to the mean curvature flow (the curve shortening
flow). We construct a semi-Lagrangian scheme based on the Feynman–Kac representation formula of the solutions of the
related level set geometric equation. The first step is to obtain an approximation of the associated codimension-1 problem
formulated by Ambrosio and Soner, where the squared distance from the initial curve is used as initial condition. Since the
e-sublevel of this evolution contains the curve, the next step is to extract the curve itself by following an optimal trajectory
inside each e-sublevel. We show that this procedure is robust and accurate as long as the ‘‘fattening’’ phenomenon does not
occur. Moreover, it can still single out the physically meaningful solution when it occurs.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the problem of numerical approximation for the shortening flow of a curve in R3 by mean cur-
vature motion (MCM). In particular, we develop a scheme in the framework of level-set models.

Geometrically the mean curvature vector points in the direction where the length of the curve decreases
most. This results in the evolution which shortens the curve in the fastest way.

It is well known that the flow by mean curvature may develop singularities in finite time even if the initial
manifold is smooth. This tends to rule out a parametric approach. In addition, one might be especially inter-
ested in the motion of curves that exhibit topological changes, i.e. merging and breaking. In the case of curves
in R3, the behaviour should be to shorten the curve length, this meaning that when two segments of the curve
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touch, the curve breaks and reconnects according to the acute angle direction (see the discussion of this point
in [5]).

To set our contribution into perspective, let us recall that numerical approximations for MC motion of curves
in R3 have been studied by several authors. Dziuk et al. [12–15] have obtained a priori convergence results for a
finite element approximation which also suits the anisotropic case (see also [23] and the references therein).
Although their schemes can handle singularities (like self-intersecting curves in R2), theoretical results require
more regularity. More recently a codimension-2 version of the Merriman, Bence, Osher algorithm [22] has been
proposed by Ruuth et al. [26]. The above approach has all the advantages of level set methods in capturing the
curve motion, including topological changes, but is still impractical for generating highly accurate solutions since
the local truncation error is Oð1=j logðDtÞjÞ. In a different method proposed by Burchard et al. [5], the curve is
represented by the intersection of the zero level sets of two functions / and w (more generally, a smooth manifold
with codimension-k can be represented as the intersection of the zero level sets of k scalar functions). The motion
of the curve is accomplished by evolving / and w in R3 according to a suitable system of PDEs. Although the
current state of the theory of viscosity solutions does not provide well-posedness results for this type of systems,
such a representation has been successfully used for numerical simulations [5] (see also [11] for other generaliza-
tions). Even if we deal with isotropic motion, we should mention that the above approaches have also been
applied to anisotropic curve motion, as well as to the motion of triple junctions.

The main goal of this paper is to give an approximation scheme for the curve shortening flow extending to
codimension-2 the scheme for MCM in codimension-1 proposed by Falcone and Ferretti [18]. It is interesting
to note that the scheme can be interpreted as a discretization of the Feynman–Kac representation formula for
level set solutions of the geometric equation. The continuous representation formula was proved by Soner
and Touzi [29] (the same representation formula has been obtained by Buckdahn et al. in [4] for the case of codi-
mension-1 mean curvature flow). More recently, Kohn and Serfaty [21] have given another control-theoretic
interpretation of motion by mean curvature showing that the solution of the degenerate parabolic problem asso-
ciated to the level set formulation can be approximated by a family of discrete time, two-persons games (see the
Introduction in [21] for a discussion of the relationship between the games and the stochastic control viewpoints).

In our approach to the codimension-2 problem, we take advantage of the formulation and results of
Ambrosio and Soner [1], who have proved (see the Appendix for details) that an approximation of the curve
shortening flow can be obtained by embedding the problem in a new codimension-1 evolutive problem using
the squared distance from the original curve as initial condition. Taking the e-sublevel set of the solution to
this problem, the curve evolution is obtained in the limit for vanishing e. This result is also useful for our
approximation since we first compute the solution of the codimension-1 problem and then use this informa-
tion to reconstruct the curve which is ‘‘inside’’ the e-sublevel set. In particular, the reconstruction of the curve
is based on the fact that the curve at time t is the 0-level set of the nonnegative solution uðx; tÞ, i.e. it is the set of
the minimum points of u. Then, the algorithm for the curve reconstruction starts from a point on the curve
and follows the minima by solving a suitable sequence of constrained minimization problems. In principle,
this algorithm should not work properly if the ‘‘fattening’’ phenomenon occurs, as in the example of two
linked circles analysed by Bellettini et al. [2]. However, we will present a couple of examples in which the algo-
rithm selects the evolution corresponding to the fastest shortening.

The outline of the paper is as follows. In Section 2 we present the origin of our semi-Lagrangian scheme for
the case of codimension 1. In Section 3 we describe the construction of the schemes in codimension 2 and in
Section 4 their consistency analysis. In Section 5 some numerical tests are presented. Finally, we briefly review
in the appendix the Ambrosio–Soner formulation of the MCM in arbitrary codimension.

2. Front propagation and SL- schemes in codimension 1

The level set method has been used for a long time in the approximation of front propagation problems (see
the books [27,24]). In the case of a front propagating in the normal direction and driven by a known speed
cðx; tÞ it gives rise to the following first order Hamilton–Jacobi equation:
ut þ cðx; tÞjDuj ¼ 0 in Rn � ½0;1Þ;
uðx; 0Þ ¼ u0ðxÞ;

�
ð1Þ
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where u0 is a continuous function having the initial configuration of the front C0 as its zero level set (or a pre-
scribed level set with a nonzero gradient on it). Although the discretization of such equation has been first
obtained by finite differences, also semi-Lagrangian methods have been successfully applied, e.g. in
[16,31,17]. The basic idea which is behind semi-Lagrangian approximations is to follow the characteristics
of the problem by an ODE scheme and then compute the value at the foot of the characteristic by a numerical
reconstruction based on grid values [30]. A simple way to make characteristics appear for problem (1) is to
rewrite it as
ut þ max
a2Bð0;1Þ

fcðx; tÞa � Dug ¼ 0 in Rn � ½0;1Þ;

uðx; 0Þ ¼ u0ðxÞ;

(
ð2Þ
where Bð0; 1Þ ¼ fx 2 Rn : jxj 6 1g is the unit ball in Rn.
Naturally, the maximum is attained for the direction a�ðxÞ ¼ DuðxÞ=jDuðxÞj which gives the normal direc-

tion to the front at every point. As in [17], this formulation can be applied to derive a scheme which at every
point of the grid computes the solution following for one step all possible directions and reconstructing the
values at the feet of characteristics zðx; t; a;DtÞ � x� Dtcðx; tÞa by interpolation. In R2, this corresponds to
the scheme
unþ1
j ¼ min

a2Bð0;1Þ
fI ½un�ðzðxj; t; a;DtÞÞg in R2 � ½0;1Þ;

uðx; 0Þ ¼ u0ðxÞ;

(
ð3Þ
where I ½un�ðxÞ denotes a numerical reconstruction (by interpolation) performed at the point x on the discrete
solution un, and we have adopted the standard notation un

j ¼ uðxj; tnÞ, assuming for simplicity a structured grid
G ¼ fxj : xj ¼ jDx; j 2 Z2g and tn ¼ nDt. It is interesting to note that this scheme represents a discrete version
of the Lax–Hopf representation formula (see [17]). Whenever the speed c has constant sign this corresponds
also to the Huygens principle and has a strong connection with the classical minimum time problem where a
dynamical system _x ¼ �cðx; tÞa controlled by the parameter a 2 Bð0; 1Þ has to be driven to a given target X0 (in
the front propagation problem, this is the internal region entoured by C0, see [16,19]). The scheme (3) has a
built-in up-wind correction which is obtained by computing a maximum at every point. This clearly results in
an additional cost which can be reduced adopting efficient optimization methods as the one in [3]. However,
the fact that the normal direction is computed more accurately with respect to finite difference schemes im-
proves the global accuracy of the approximation.

When the evolution of the front is driven by its curvature the situation becomes more complex, but we can
still follow the same approach. Formally, we can replace the given velocity in (2) by the curvature K setting
cðx; tÞ ¼ Kðx; tÞ. Since the curvature depends on u the level set formulation leads to the second order Hamil-
ton–Jacobi equation related to the MC flow:
ut � div Du
jDuj

� �
jDuj ¼ 0 in Rn � ½0;1Þ;

uðx; 0Þ ¼ u0ðxÞ;

(
ð4Þ
where again the initial condition u0 is a continuous function representing C0 (the equation refers to the evo-
lution in the inward normal direction as it is usually done in the experiments).

A direct discretization of (4) in the form suggested by the first order model has been proposed in [25]. A
semi-Lagrangian version of this approach has been introduced by Strain in [31] and improved in a series of
papers (see [32] and its references for the latest developments). In [31] the CIR method (from Courant, Isaac-
son and Rees) has been applied to level set models on uniform grids presenting several experiments where the
method converges to the right solution. It is interesting to note that the SL-scheme implemented there has
shown to be stable and accurate also in presence of changes of topology, faceting and curvature driven fronts.
Moreover, the experiments show that choosing Dt = O(Dx) the method remains stable also for parabolic prob-
lems, a great improvement with respect to the traditional CFL condition Dt = O(Dx2). In [32] the method has
been improved introducing adaptive (quadtree) meshes and advanced contouring and redistancing techniques
(the computation of the signed distance function on a collection of points is a crucial step in the level set
method to reduce the error at the interface).
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Another simple way to get a semi-Lagrangian scheme by extending the same argument used in the first
order scheme (3), is to write first the equation as
ut � max
a2Bð0;1Þ

div Du
jDuj

� �
a � Du

n o
¼ 0 in Rn � ½0;1Þ;

uðx; 0Þ ¼ u0ðxÞ;

8<: ð5Þ
and let the normal direction be selected by the max operator. The evolution Ct of the interface is then tracked
by taking the same level set of the solution uðx; tÞ of (4). A drawback of this approach is that the (possibly
unbounded) second order term appears in the velocity along characteristics. An alternative approach is to de-
fine characteristics as solution trajectories of a stochastic differential equation (see [18,6,7] for details). This
leads to the following large time-step, averaged scheme for (4) which, following [18], can be written in R2 as
unþ1
j ¼ 1

2
I ½un�ðxj þ rn

j

ffiffiffiffiffi
Dt
p
Þ þ I ½un�ðxj � rn

j

ffiffiffiffiffi
Dt
p
Þ

� �
; ð6Þ
where rn
j is defined by
rn
j ¼

ffiffiffi
2
p

jDn
j j

Dn
2;j

�Dn
1;j

 !
ð7Þ
with Dn
1;j, Dn

2;j and Dn
j suitable numerical approximations of respectively ux1

ðxj; tnÞ, ux2
ðxj; tnÞ and Duðxj; tnÞ.

Note that the numerical domain of dependence of unþ1
j is given by the two regions around the points

xj � rn
j

ffiffiffiffiffi
Dt
p

which are about 2
ffiffiffiffiffiffiffiffi
2Dt
p

apart. As expected, the discrete evolution takes into account the normal
direction to the front with a speed which depends on the discrete curvature at the point x. An interesting var-
iant of this scheme can be obtained by replacing the finite difference approximation of rj by a min–max oper-
ator as in Kohn–Serfaty [21]. In fact, this results in the following min–max scheme
unþ1
j ¼ min

l2S1
maxðI ½un�ðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ; I ½un�ðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

lÞÞ
� �

; ð8Þ
where S1 ¼ fx 2 R2 : jxj ¼ 1g is the unit sphere in R2. This scheme (which has been proposed in a very similar
form by Catté et al. in [9]) has the advantage of detecting the gradient direction without requiring an approx-
imation of the gradient itself, although it is more expensive due to the presence of the min–max operator. Con-
struction and stochastic interpretation of the codimension-2 version of schemes (6) and (8) will be presented in
Section 3. Section 4 is devoted to consistency analysis whereas in the last section we will compare the two
schemes on some benchmarks. We point out that, in contrast with the SL techniques developed in [31,32],
the approach pursued here focuses on the level set equation rather then the interface itself. In this respect,
our SL techniques stem from a suitable characteristic-based representation formula for the viscosity solution
uðx; tÞ. Moreover, we will not address here advanced issues such as contouring, redistancing and adaptivity,
although for the latter some preliminary result for the codimension-1 case is shown in [8].

3. The approximation scheme for curves in R3

Following [4,28,29], we will derive our scheme, as it has been done in [18], from the discretization of a sto-
chastic representation formula. We will sketch in this section both the stochastic framework and the derivation
of the scheme trying to keep the technical details to a minimum (a complete and rigorous treatment can be
found in the references above).

To approximate the mean curvature flow of a curve C0, let us start from the level set equation in R3:
ut ¼ F ðD2u;DuÞ in R3 � ½0;1Þ;
uðx; 0Þ ¼ u0ðxÞ;

(
ð9Þ
where the initial condition is uðx; 0Þ ¼ dðx;C0Þ2, the squared distance from the curve C0, or another continuous
function vanishing on C0 and positive on R3 n C0. For p 2 R3, A a symmetric matrix in R3�3, the function F is
given by
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F ðA; pÞ ¼ inf
m2NðpÞ

ftrace½AP m�g;
NðpÞ being defined for p 6¼ 0 as
NðpÞ ¼ fm 2 U jP mp ¼ 0g;

where U ¼ fm ¼ ðm1; m2Þ 2 S2 � S2 : m1 � m2 ¼ 0g with S2 ¼ fx 2 R3 : jxj ¼ 1g and P m is a projection matrix.
More precisely, we define
P m :¼ I3 � m1m
T
1 � m2m

T
2 ; ð10Þ
where aT denotes the transpose of a vector a and I3 is the identity matrix in R3. Since in this situation P m is of
rank 1, we can find a vector l 2 S2 such that
P m ¼ llT
(l is a normalized eigenvector associated to the nonzero eigenvalue of P m). Then, F ðA; pÞ can be rewritten as
F ðA; pÞ ¼ infftrace½AllT� : l 2 S2; p � l ¼ 0g: ð11Þ

Let now ðX;F;P;Fs; s 2 ½0; T �Þ be a complete stochastic basis endowed with a three-dimensional Brownian
motion W ¼ ðW ðsÞ; s 2 ½0; T �Þ and let lð�Þ be some S2-valued and ðFsÞ-progressively measurable process, then
the generalized characteristics associated to (9) may be written as
dylðx; t; sÞ ¼
ffiffiffi
2
p

lðsÞlðsÞT dW ðsÞ; s 2 ð0; t�
ylðx; t; 0Þ ¼ x;

(
ð12Þ
or equivalently as
dylðx; t; sÞ ¼
ffiffiffi
2
p

lðsÞlTðsÞdW ðsÞ ¼
ffiffiffi
2
p

lðsÞd bW ðsÞ;

where d bW is the differential of a one-dimensional Brownian motion:
d bW ðsÞ ¼ lðsÞT dW ðsÞ 2 R:
Note that the assumption that l is measurable in s, guarantees the local existence of a unique strong solution
(in the standard stochastic integral sense, see e.g. [20, Section 4.5]) for the Cauchy problem (12). In practice,
ylðx; t; sÞ is a generalized characteristic going backward from ðx; tÞ and having a diffusion coefficient lð�Þ. The
associated stochastic Cauchy problem is therefore:
dylðx; t; sÞ ¼
ffiffiffi
2
p

lðsÞd bW ðsÞ; s 2 ð0; t�
ylðx; t; 0Þ ¼ x:

(
ð13Þ
Although more general representation formulae exist (see [29]), in the case u is a smooth solution of (9), by the
Ito–Taylor expansion one can easily verify that
uðx; tÞ ¼ inf
lð�Þ2Uðx;tÞ

fuðylðx; t; tÞ; 0Þg ð14Þ
almost surely for any ylðx; t; sÞ solving (13), with
Uðx; tÞ ¼ flð�Þ : ½0; T � ! S2 	 R3 : lðsÞ � Duðylðx; t; sÞ; t � sÞ ¼ 0 a:e: for s 2 ½0; t�g;
where t 2 ½0; T � (note that this set is nonempty a.e. in ðx; tÞ provided u is a.e. differentiable). Since (14) holds
true almost surely for any trajectory ylðx; t; sÞ starting at ðx; tÞ and satisfying (13), then it also holds for the
probability expectation:
uðx; tÞ ¼ inf
lð�Þ2Uðx;tÞ

Efuðylðx; t; tÞ; 0Þg: ð15Þ
The first step of our algorithm is to compute the solution of (9) (codimension-1 problem). Our aim is there-
fore to give a discrete version for (15) building a time-discrete approximation of the generalized characteristics
over a time interval Dt and projecting on a uniform space grid of space step Dx. We will show that, although
this construction is based on a stochastic representation formula, the result is purely deterministic, and, since
(15) holds for any t > 0, it also allows for large time steps.
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Let us start from the approximation of (13). We consider a partition tn ¼ nDt; n ¼ 0; 1; . . . ; T
Dt

� �
(where ½��

denotes the integer part) of the time interval ½0; T �. Let yj denote the approximation of the stochastic trajectory
y at time tj. We are interested in approximation scheme for the trajectories converging in the standard weak
sense (see [20]), which means that
jEfgðyjÞg � EfgðyðjDtÞÞgj ! 0; ð16Þ
for every smooth function g. In particular, we are interested in the situation in which g = u, and y is a solution
of (13) for a fixed diffusion coefficient lð�Þ. The easiest way to obtain (16) is to use the weak Euler method (see
[20]). When this method is applied to (13), taking into account that for increasing s we integrate characteristics
backwards from the point ðx; tnþ1Þ, we obtain:
yjþ1 ¼ yj þ
ffiffiffi
2
p

lðtjÞD bW j

y0 ¼ x:

(

Even if D bW j should represent a Gaussian variable with mean 0 and variance Dt, first order weak conver-
gence can be achieved just using a variable with 2-points discrete probability density:
P ðD bW j ¼ �
ffiffiffiffiffi
Dt
p
Þ ¼ 1

2
; ð17Þ
for the one-dimensional Brownian process (see [20] for this and more general approximation schemes for sto-
chastic differential equations). Then, the representation formula (15) is written on a single time step ½tn; tnþ1� so
that
uðx; tnþ1Þ ¼ inf
lð�Þ2Uðx;tnþ1Þ

Efuðylðx; tnþ1; DtÞ; tnÞg:
Denoting now by uDtðx; tÞ a time-discrete approximation, and replacing the function lð�Þ with a constant
value l on ðtn; tnþ1�, we can write a first time discretization of (15) as:
uDtðx; tnþ1Þ ¼ min
l2Unþ1

Dt
ðxÞ

EfuDtðxþ
ffiffiffi
2
p

lD bW nþ1; tnÞg;
where we introduce the set Uj
DtðxÞ ¼ fl 2 S2 	 R3 : l � DuDtðx; tjÞ ¼ 0g. Note that l 2 U nþ1

Dt ðxÞ to match the
definition of the stochastic Euler method. This would result in an implicit scheme. To avoid this, we rather
consider the following explicit scheme:
uDtðx; tnþ1Þ ¼ min
l2Un

Dt
ðxÞ

EfuDtðxþ
ffiffiffi
2
p

lD bW n; tnÞg:
Then, using (17), we obtain a third discrete-time approximation:
uDtðx; tnþ1Þ ¼ min
l2Un

Dt
ðxÞ

1

2
uDtðxþ

ffiffiffiffiffiffiffiffi
2Dt
p

l; tnÞ þ
1

2
uDtðx�

ffiffiffiffiffiffiffiffi
2Dt
p

l; tnÞ
� �

:

In the algorithm, we treat the constraint l � Du ¼ 0 by penalization and compute an infimum over S2:
uDtðx; tnþ1Þ ¼ min
l2S2

1

2
uDtðxþ

ffiffiffiffiffiffiffiffi
2Dt
p

l; tnÞ þ
1

2
uDtðx�

ffiffiffiffiffiffiffiffi
2Dt
p

l; tnÞ þ
1

a
jDuDtðx; tnÞ � lj2

� �
ð18Þ
with 0 < a.
Next, we discretize (18) with respect to the space variable. Setting up a space grid of step Dx, we denote by

xj the nodes of a lattice where j ¼ ðj1; j2; j3Þ 2 Z3 and xj ¼ ðj1Dx; j2Dx; j3DxÞ 2 R3, by un
j the fully discrete

approximation of the continuous solution uðxj; tnÞ and by un ¼ ðun
j Þj2Z3 . On this grid, the solution at the sto-

chastic up-wind points xj �
ffiffiffiffiffiffiffiffi
2Dt
p

l is evaluated by a numerical interpolation I ½un�ð�Þ and the gradient is
replaced by a centered differences approximation, so that defining
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Dj½un� ¼ 1

2Dx

un
j1þ1;j2;j3

� un
j1�1;j2;j3

un
j1;j2þ1;j3

� un
j1;j2�1;j3

un
j1;j2;j3þ1 � un

j1;j2;j3�1

0B@
1CA;
the fully discrete, ‘‘averaged’’ scheme is given by
unþ1
j ¼ SjðunÞ; ð19Þ
where
SjðunÞ � min
l2S2

1

2
I ½un�ðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ þ 1

2
I ½un�ðxj �

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ þ 1

a
ðDj½un� � lÞ2

� �
:

The scheme is deterministic and explicit. The numerical domain of dependence has a radius of
ffiffiffiffiffiffiffiffi
2Dt
p

and this
allows to circumvent the classical parabolic CFL condition of explicit schemes without stability losses. How-
ever, the two reconstruction stencils of I ½un�ðxj �

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ are 2
ffiffiffiffiffiffiffiffi
2Dt
p

apart, and in order to resolve smaller
structures (that is, for accuracy instead of stability reasons) it might be necessary to reduce the time step.
We point out that, in the codimension-1 case, no minimization is required if Du 6¼ 0, and the scheme reduces
to the one proposed in [18].

The second (min–max) approach requires to replace (15) with a more general representation formula. Fol-
lowing [28], we can write the solution as:
uðx; tÞ ¼ inf
l
ðess supXuðymðx; t; tÞ; 0ÞÞ; ð20Þ
where, roughly speaking, l maps the interval ½0;þ1½ into a suitable compact subset of Rn; for all the technical
assumptions and definitions needed for this formula we refer to [28]. Using the same discretization strategy as
sketched before, we obtain the codimension-2 version of the min–max scheme (8)
unþ1
j ¼ min

l2S2
maxðI ½un�ðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ; I ½un�ðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

lÞÞ
� �

; ð21Þ
where the only difference with the codimension-1 version is that the minimization is accomplished over the
three-dimensional sphere S2. Note that a time-discrete version of (21) is outlined in [21].

As we said, our final aim is to compute the evolution of the curve Ct, for t = tn. Therefore, the second phase
of the algorithm consists in extracting the curve contained in the e-sublevel set of uðx; tnÞ. The problem of
determining the location of the curve inside this ‘tube’ is solved by following an ‘optimal trajectory’. The idea
is to exploit the property that the curve is made by points achieving the minimum value. Once a starting point
of the curve is located, the algorithm moves (with a fixed step Dn) towards a new point achieving a minimum.
Of course we expect to find two such points, and in order to keep the same direction on the curve Ctn , the
search for a new increment is restricted to a half space once the first choice has been made.

We sketch below the main steps of this post–processing phase.

3.1. Optimal trajectory algorithm

Step 1 Find a point n0, such that the numerical solution un achieves a minimum value. Then, n0 will be the
starting point for our curve reconstruction.

Step 2 Evaluate the corresponding optimal direction:
ĝn
0 ¼ argmin

g2S2

funðn0 þ DngÞg;
where Dn 2 R is the curvilinear abscissa step. Set j = 1 and
n1 ¼ n0 þ Dnĝn
0

Step 3 For j P 1, compute
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ĝn
jþ1 ¼ argmin

g�ĝn
j>0

g2S2

funðnj þ DngÞg;

njþ1 ¼ nj þ Dnĝn
jþ1
(note that the condition g � ĝn
j > 0 ensures that the algorithm keeps the same direction along the curve)

Step 4 If jn0 � njþ1j 6 etol then Stop, otherwise increment j and go to Step 3.

The stop condition of step 4, with etol a fixed tolerance depending on Dn, works fine for closed or periodic
curve (such as the ones presented in the section on numerical tests). However, this procedure may fail in
detecting the proper endpoint for open or non-periodic curves, in which case suitable initial or final conditions
are needed.

4. Consistency analysis

Our goal here is to prove consistency for our SL-schemes. Regardless of the stochastic arguments which
have been used in the construction of the scheme, the consistency analysis will be carried out here with merely
deterministic techniques.

We point out that the following consistency estimates refer to the approximation of the solution u and
should be intended as rough measures of accuracy for the scheme. The reconstruction of the evolving curve
Ct results from a further post-processing step whose precision is not discussed here. The section is split in
two subsections, depending on the version of the scheme considered.

4.1. Averaged scheme

In this first case, we consider a penalized approximation of the function F, that is
F bðA; pÞ ¼ inf
l2S2

trace½AllT� þ 1

b
jp � lj2

� �
:

Convergence of the method of penalization for constrained minimization problems ensures that
lim
b!0

F bðA; pÞ ¼ F ðA; pÞ:
Since we use a penalization technique to treat the constraints which appear in the definition of F in (11),
we develop the consistency analysis for a penalized continuous problem where the function F is replaced
by
F bðA; pÞ ¼ min
l2S2
ftrace½AllT� þ 1

b
jp � lj2g ¼ trace½A�l�lT� þ 1

b
ðp � �lÞ2 ¼¼ �lTA�lþ 1

b
ðp � �lÞ2: ð22Þ
In (22), we have written the matrix P m as P m ¼ llT and explicitly referred to the vector �l which attains the
minimum. We consider a smooth solution uðx; tÞ whose samples are contained in a vector w and we assume
that the order of convergence of the space reconstruction is r, then we get
SjðwÞ ¼ min
l2S2

1

2
I ½w�ðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ þ 1

2
I ½w�ðxj �

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ þ 1

a
ðDj½w� � lÞ2

� �
¼ min

l2S2

1

2
uðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

l; tÞ þ 1

2
uðxj �

ffiffiffiffiffiffiffiffi
2Dt
p

l; tÞ þOðDxrÞ
�

þ 1

a
ðDuðxj; tÞ � lÞ2 þ

1

a
ðDj½w� � lÞ2 � ðDuðxj; tÞ � lÞ2
h i�

¼ min
l2S2

1

2
uðxj þ

ffiffiffiffiffiffiffiffi
2Dt
p

l; tÞ þ 1

2
uðxj �

ffiffiffiffiffiffiffiffi
2Dt
p

l; tÞ þOðDxrÞþ
�

1

a
ðDuðxj; tÞ � lÞ2 þ

OðDx2Þ
a

�
;
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where we have used the second-order convergence rate of the centered difference approximation for the gra-
dient. The relationship between the two penalization parameters a and b will be clarified below. Expressing the
points xj �

ffiffiffiffiffiffiffiffi
2Dt
p

l by a third-order Taylor expansion we obtain
SjðwÞ ¼ uðxj; tÞ þmin
l2S2

ffiffiffiffiffiffiffiffi
2Dt
p

2
Duðxj; tÞ � lþ

Dt
2

lTD2uðxj; tÞlþ
1

12
D3uðxj; t;

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ�
( ffiffiffiffiffiffiffiffi

2Dt
p

2
Duðxj; tÞ � l

þ Dt
2

lTD2uðxj; tÞl�
1

12
D3uðxj; t;

ffiffiffiffiffiffiffiffi
2Dt
p

lÞ þOðDt2Þ þOðDxrÞ þ 1

a
ðDuðxj; tÞ � lÞ2 þ

OðDx2Þ
a

�
¼ uðxj; tÞ þmin

l2S2
DtlTD2uðxj; tÞlþ

1

a
ðDuðxj; tÞ � lÞ2þ

�
þOðDt2Þ þOðDxrÞ þOðDx2Þ

a

�
: ð23Þ
In (23), D3uðxj; t;
ffiffiffiffiffiffiffiffi
2Dt
p

lÞ denotes the third-order differential of u computed at ðxj; tÞ with increment
ffiffiffiffiffiffiffiffi
2Dt
p

l
(note that the odd terms of the expansion disappear because of the opposite signs). Now, using �l defined
in (22) instead of the true minimizer in (23), and setting b ¼ aDt gives the inequality
SjðwÞ 6 uðxj; tÞ þ DtF bðD2uðxj; tÞ;Duðxj; tÞÞ þOðDt2Þ þOðDxrÞ þOðDx2Þ
a

:

Using in turn the minimizer of (23) instead of �l in (22) gives a reversed inequality, and at last the consistency
error
LDx;Dtðxj; tÞ ¼ OðDtÞ þO
Dxr

Dt

	 

þO

Dx2

aDt

	 

: ð24Þ
Note that the scheme is conditionally consistent, and the relationship between Dt and Dx could be optimized
so as to achieve the highest consistency rate. In the numerical tests we will rather choose Dt 
 Dx and use a
cubic reconstruction (r = 4) to reduce numerical viscosity (this fact is crucial for a correct detection of the min-
ima of uðx; tÞ). The choice of a is not critical: in fact, the scheme is consistent with a continuous problem where
the penalization parameter is b ¼ aDt, which vanishes even for constant a. Moreover, the curve Ct lies on the
minima of uðx; tÞ where the constraint Du � l ¼ 0 is identically satisfied, so that penalization needs not to be
overly accurate.

4.2. Min–max scheme

First, note that we can rewrite the function F as
F ðA;pÞ ¼ min
l2S2;l�p¼0

ftrace½AllT�g ¼min
l2S2

maxftrace½AllT� �l � p; trace½AllT� þl � pg ¼ trace½A~l~lT� ¼ ~lTA~l;
where we have denoted by ~l the minimizer (note that since l 2 S2, the choice of the sign is irrelevant). Here
and in the sequel, we make use of the fact that if two functions f1ðlÞ and f2ðlÞ depend continuously on l and
span the same set, their max is minimized when they attain the same value.

Following the notation and technique introduced above, we have for this version of the scheme:
SjðwÞ ¼ min
l2S2

max I ½w�ðxj þ
ffiffiffiffiffiffiffiffi
2Dt
p

lÞ; I ½w�ðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

lÞ
� �n o

ð25Þ
and therefore, denoting by �lj the minimizer in (25),
SjðwÞ ¼ I ½w�ðxj þ
ffiffiffiffiffiffiffiffi
2Dt
p

�ljÞ: ð26Þ
The values within the max can be expressed as
I ½w�ðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

lÞ ¼ uðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

l; tÞ þOðDxrÞ

¼ uðxj; tÞ �
ffiffiffiffiffiffiffiffi
2Dt
p

Duðxj; tÞ � lþ DtlTD2uðxj; tÞlþOðDt3=2Þ þOðDxrÞ: ð27Þ
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Now, the max of I ½w�ðxj �
ffiffiffiffiffiffiffiffi
2Dt
p

lÞ is minimized when the two values coincide, so that
uðxj; tÞ þ
ffiffiffiffiffiffiffiffi
2Dt
p

Duðxj; tÞ � �lj þ Dt�lT
j D2uðxj; tÞ�lj þOðDt3=2Þ þOðDxrÞ

¼ uðxj; tÞ �
ffiffiffiffiffiffiffiffi
2Dt
p

Duðxj; tÞ � �lj þ Dt�lT
j D2uðxj; tÞ�lj þOðDt3=2Þ þOðDxrÞ
and therefore
ffiffiffiffiffiffiffiffi
2Dt
p

Duðxj; tÞ � �lj ¼ OðDt3=2Þ þOðDxrÞ ð28Þ

(note that (28) shows that the minmax operation basically selects again the direction orthogonal to the gra-
dient). Using now (26)–(28) in (25), we obtain
SjðwÞ ¼ uðxj; tÞ þ Dt�lT
j D2uðxj; tÞ�lj þOðDt3=2Þ þOðDxrÞ:
Taking now into account that
F ðD2uðxj; tÞ;Duðxj; tÞÞ ¼ ~lT
j D2uðxj; tÞ~lj

6 maxf�lT
j D2uðxj; tÞ�lj � �lj � Duðxj; tÞ; �lT

j D2uðxj; tÞ�lj þ �lj � Duðxj; tÞg

6 �lT
j D2uðxj; tÞ�lj þOðDtÞ þO

Dxr

Dt1=2

	 


(note that we have used again (28) and that the terms OðDtÞ and OðDxr=Dt1=2Þ are not the leading consistency
terms and may therefore be omitted) we get
SjðwÞP uðxj; tÞ þ DtF ðD2uðxj; tÞ;Duðxj; tÞÞ þOðDt3=2Þ þOðDxrÞ:

By interchanging again the roles of the minimizers ~l and �l we can obtain the reverse inequality, so that at last
LDx;Dtðxj; tÞ ¼ OðDt1=2Þ þO
Dxr

Dt

	 

:

This latter consistency estimate would in principle be optimized under smaller time steps then the former. In
practice we will compare the two schemes with the same steps, obtaining however a somewhat lower perfor-
mance of the min–max version.

5. Numerical tests

In all the tests we started our approximations by following the evolution of an e-sublevel set, as described in
Section 3. Although the parabolic behaviour of the evolution equation results in a thickening of the e-sublevel,
the optimal trajectory algorithm does not suffer from this effect. It has been implemented with a Dn ’ Dx, so as
to avoid the detection of local minima due to the reconstruction, and with a tolerance of etol ¼ Dn for deter-
mining the endpoint of closed curves.

The Optimal Trajectory Algorithm combines a cubic interpolation and a minimization. The minimization
has been performed via Brent’s routine PRAXIS from NETLIB (see [3] for details) which works on the prin-
ciple of finding conjugate directions by means of interpolated line searches. This routine has proved to be
robust enough to carry out the minimization of an unsmooth function, while retaining superlinear conver-
gence whenever the function is smooth. Once minimization is performed with a high accuracy, the prevailing
error of the Optimal Trajectory Algorithm is due to interpolation.

The convergence rate of the reconstructed curve results from both the semi-Lagrangian scheme (19) or (21),
which should be at most first-order accurate, and the Optimal Trajectory Algorithm. In spite of this, numerical
errors are remarkably small even for the coarsest grids and measured convergence rates usually go beyond the
value 1.

5.1. Simple curves

The first set of tests presents the evolution of simple curves. Following [5,26], in the first two tests we have
computed errors between numerical and exact evolution, along with convergence rates, for both the averaged
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and the min–max scheme. For Test 1, CPU times are also shown. Error tables report the maximum EH over all
iterations of the Hausdorff distance between exact and computed curves, each successive row representing a
reduction of the discretization steps by a factor of about

ffiffiffi
2
p

. In the first two tests, the initial condition is
smooth and very large time steps may be used, whereas in the third the initial curve presents corners, and
the time step has been reduced in order to track more precisely the evolution of singularities (this situation
could also be handled with a time-adaptive scheme, see [8]). Note that in tests 1 and 2 we have indicated
an approximate Dx=Dt ratio. With a fixed final time, such large time steps do not allow to keep a precise ratio,
and therefore each refinement has been performed so as to be as close as possible to the relationship chosen.
This partly explains some irregularity in the measured convergence rates.

Test 1: Evolution of an oblique circle in R3

We approximate (9) in ½�1:5; 1:5�3 � ½0; 0:45�, with
Table
Nume

Grid

Nodes

163

233

323

453

643

903
u0ðx1; x2; x3Þ ¼
ffiffiffi
3
p

2
x2 þ

1

2
x3

 !2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ
1

2
x2 �

ffiffiffi
3
p

2
x3

 !2
vuut � 1

0B@
1CA

2

;

that is, a function vanishing on a circle centered at the origin, with radius 1 and contained in an oblique plane,
so as to avoid an alignment with the grid. We present in Table 1 the errors evaluated at time T = 0.45 (note
that the circle should collapse at the theoretical time T* = 0.5). The ratio Dx=Dt � 1:25 has been used to deter-
mine the time step for each refinement of the space grid. The CPU time refers to the seconds needed to run
each test in a CLUSTER IBM power 5 (eight processors at 1.9 GhZ). For a comparison, with the same level of
code optimization such a platform performs the product of two 5000 · 5000 matrices in 96 s. Note that the
min–max scheme has a slightly lower overall convergence rate and, due to the fact that it minimizes a non-
smooth function instead of a smooth one, it also has higher execution times. In both cases, however, the in-
crease in CPU times is approximately of order Dx�4, that is, of the same order as the total number of nodes in
the space–time grid.

Fig. 1 refers to iterations n ¼ 0; 2; 4; 6; 8; 10 for the collapsing circle with time step Dt = 0.0375 and
Dx = 0.046875.

Test 2: Evolution of a helical curve in R3

We take (9) in ½0; 1�3 � ½0; 0:05�, for
u0ðx1; x2; x3Þ ¼ x1 � 0:5� 0:3 cosð2px3Þð Þ2 þ x2 � 0:5� 0:3 sinð2px3Þð Þ2;

i.e. a function vanishing on a helix centered on the axis ð0:5; 0:5; x3Þ and with radius 0.3.

The pictures in Fig. 2 refer to a simulation with Dx ¼ 0:015626, Dt ¼ 0:00625, cubic interpolation. Periodic
conditions are used at the boundary. We plot the e sublevel set at time iterations n ¼ 1–8, together with the
helical curve inside each sublevel set.

In Fig. 3 we plot only the helical curve evolution. As the figure shows, the curve remains helical but with a
shrinking radius, as obtained for the same test by Burchard, Cheng, Merriman and Osher in [5]. The compar-
ison with [5] shows a similar order of magnitude for errors, with a lower convergence rate but with a lower
number of time steps in our case. Tests are run with the ratio Dx=Dt � 2:5 and the corresponding results
are presented in Table 2.
1
rical errors, convergence rates and CPU times for Test 1

Averaged scheme Min–max scheme

Dt EH Rate CPU (s) EH Rate CPU (s)

0.15 9.47 · 10�3 28 2.01 · 10�2 54
0.1125 2.98 · 10�3 3.33 120 8.08 · 10�3 2.63 206
0.09 9.77 · 10�4 3.21 378 1.99 · 10�3 4.03 748
0.05 3.48 · 10�4 2.97 2212 1.29 · 10�3 1.25 3523
0.0375 2.05 · 10�4 1.54 9047 6.80 · 10�4 1.85 13,161
0.02647 8.79 · 10�5 2.44 35,739 3.75 · 10�4 1.71 55,411
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Fig. 1. Evolution of the oblique circle, post-processed curve.

Table 2
Numerical errors and convergence rates for Test 2

Grid Averaged scheme Min–max scheme

Nodes Dt EH Rate EH Rate

163 2.5 · 10�2 8.09 · 10�3 9.51 · 10�3

233 1.6 · 10�2 4.96 · 10�3 1.41 8.87 · 10�3 0.2
323 1.25 · 10�2 3.58 · 10�3 0.94 4.83 · 10�3 1.75
453 8.34 · 10�3 2.23 · 10�3 1.36 2.83 · 10�3 1.54
643 6.25 · 10�3 1.61 · 10�3 0.94 2.28 · 10�3 0.62
903 4.55 · 10�3 1.09 · 10�3 1.12 1.87 · 10�3 0.57
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Test 3: evolution of a nonsmooth manifold

We consider (9) in ½�1:5; 1:5�3 � ½0; 0:5�, for u0 describing an initial curve which joins with segments the
points (�1,0,0), (0, 1,1), (1,0,0) and (0,�1,1).

The test is performed with the averaged scheme, Dx = 0.06, Dt = 0.005 and cubic interpolation. Fig. 4
shows the evolution of the curve every 5 iterations. In particular, the figure confirms both the regularization
of the curve and its asymptotic alignment with the plane x3 = 1/2.

5.2. Intersecting curves and fattening

In the second set of tests (which have been carried out with the averaged scheme), we present the evolution
of curves which eventually generate a double point, and therefore a region of fattening for the e-sublevel set. In
this situation, we single out the physically meaningful evolution as the one which shortens the curve in the
fastest way, in particular resolving double points by keeping acute angles connected. In the tests performed
(and definitely in the two tests presented), the scheme has shown some tendency to follow this rule of breaking
of the curve, provided the solution u is sufficiently accurate and the Courant number is relatively low. How-
ever, we have no theoretical justification for this, and in fact we also experienced some situation in which this
rule was not respected.

Test 4: evolution of two linked circles in R3

We consider (9) in ½�1:5; 1:5�2 � ½�1:5; 2:5� � ½0; 0:5�, for
u0ðx1; x2; x3Þ ¼ minðC1;C2Þ;

where C1 and C2 are the squared distances in R3 from two linked oblique circles with radius 1.



Fig. 2. Evolution of the e-sublevel for the helix, along with the post-processed curve.
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Fig. 3. Evolution of the helix, post-processed curve.
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Fig. 4. Evolution of the nonsmooth manifold, post-processed curve (x1 � x2 projection and perspective).
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The results in Fig. 5 are obtained with Dx = 0.04, Dt = 0.005 and cubic interpolation. Pictures refer to iter-
ations n ¼ 20; 30; 40; 50; 60; 70. The two curves shrink independently until they touch and a three dimensional
fattening appears, as shown by the level surfaces, and theoretically analysed by Bellettini, Novaga, Paolini in
[2]. Fig. 6 shows a snapshot of the post-processing and Fig. 7 the complete post-processed curve. Note that the
optimal trajectory algorithm reconstructs the curve with some oscillations at the breaking of the double point.
This effect is not due to instability of the scheme (and in fact, it does not propagate to subsequent iterations).
On the contrary, it is related to some inherent difficulty of the post-processing algorithm to follow the minima
of u near the onset time of fattening.

Test 5: evolution of two linked helices in R3

The second example for fattening is obtained by considering two linked helices, as in [5]. We take (9) in
½�0:75; 0:75� � ½�0:5; 0:5� � ½0; 2� � ½0; 0:02�, for
u0ðx1; x2; x3Þ ¼ minðC1;C2Þ;
where C1 and C2 are the squared distances in R3 from two helices with centers at ðx1; x2Þ ¼ ð�0:25; 0Þ and ra-
dius 0.3. Here, the space grid has 65 · 65 · 112 nodes and the time step is Dt = 0.001. Fig. 8 shows the post-
processed curves at iterations 0, 10, 20. Again, the post-processing phase has some loss of accuracy around the



Fig. 5. Evolution of the e-sublevel for the linked circles, e = 0.01.
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breaking of the double point, but according to the parameters used the topology of the reconstructed curve is
correct.

Appendix A. The level set approach to mean curvature flow in arbitrary codimension (Ambrosio–Soner, [1])

As we said in the introduction, our work is inspired by the approach introduced by Ambrosio and Soner [1].
We will briefly recall here, for reader’s convenience, the main features of such approach to curve evolution in
codimension-k. As far as we know this is the only analytical characterization which has been shown to con-
verge to the curve.

Let C � RN be a smooth surface with codimension k P 1, u : RN 7! ½0;1Þ be an auxiliary function such
that
C ¼ fx 2 RN : uðxÞ ¼ 0g: ð29Þ

Let us assume that u is smooth near C and its gradient does not vanish outside C. The key step is to express
the curvature properties of C in terms of the derivatives of this auxiliary function u. To this end, consider the
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Fig. 6. An e-sublevel for the linked circles, along with the post-processed curve.
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e-level set C� of u for small e > 0. Let us first consider the case k = 1 and for a nonzero (column) vector p 2 RN

define the projection matrix
P p ¼ IN �
ppT

jpj2
; ð30Þ
where aT denotes the transpose of a and IN is the identity matrix in RN . For any x 62 C but in a small neigh-
bourhood of C let us define the symmetric, N · N matrix
MðxÞ ¼ 1

jDuðxÞj P DuðxÞD2uðxÞP DuðxÞ;
where Du(x) and D2uðxÞ denote respectively gradient and hessian matrix of u. Moreover, let
k1ðMÞ 6 k2ðMÞ 6 � � � 6 kN�1ðMÞ

be the eigenvalues of M(x) corresponding to eigenvectors orthogonal to Du(x) (note that Du(x) is an eigen-
vector associated to the zero eigenvalue since M(x)Du(x) = 0).

The above eigenvalues correspond to the principal curvatures of the codimension-1 surface C�, oriented by
Du. Since C has codimension-k, for e small enough, we expect C� to have very large k � 1 principal curvatures
and the remaining N-k principal curvatures to be related to the geometry of C.

Ambrosio and Soner have given the following level set definition for the codimension-k mean curvature flow:
for a symmetric matrix A 2 RN�N and p 2 RN with p 6¼ 0, set
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Fig. 7. Evolution of the linked circles, post-processed curve.
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X ¼ P pAP p ð31Þ

and let
k1ðX Þ 6 k2ðX Þ 6 � � � 6 kN�1ðX Þ

be the eigenvalues of X corresponding to eigenvectors orthogonal to p (observe again that 0 is an eigenvalue of
X corresponding to p) and define



—0.5
0

0.5

—0.500.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

—0.5
0

0.5

—0.500.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

—0.5
0

0.5

—0.500.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 8. Evolution of the linked helices, post-processed curves.
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bF kðA; pÞ ¼
XN�k

i¼1

kiðX Þ:
Given an initial data C0, and a nonnegative function u0 vanishing on C0, the codimension-k mean curvature
flow of C0 is given by Ct ¼ fx 2 RN : uðx; tÞ ¼ 0g with uðx; tÞ solution of
ut ¼ bF kðD2u;DuÞ in R3 � ½0;1Þ
uðx; 0Þ ¼ u0ðxÞ:

(
ð32Þ
Ambrosio and Soner [1] have proved existence and uniqueness of a viscosity solution to the Cauchy problem
(32) provided u0 : RN 7! ½0;1Þ satisfies (29) and is uniformly continuous (the result is an extension of the clas-
sical result by Chen, Giga, Goto [10]). Moreover, they prove that Ct depends only on C0 but not on u0. Hence
Ct is a well-defined evolution of C0.

Let us now recall a representation of the differential operator corresponding to the codimension-k case.
This representation uses a generalized form of the projection matrix (30). Let us define as usual
SN�1 ¼ fz 2 RN : jzj ¼ 1g, and the set
U ¼ fm ¼ ðm1; . . . ; mkÞ 2 ðSN�1Þk : mi � mj ¼ 0 for all 1 6 i 6¼ j 6 kg: ð33Þ

Then, for any matrix (with orthonormal columns) m 2 U , let P m be the projection onto a vector space orthog-
onal to m, i.e.
P m :¼ IN �
Xk

j¼1

mjm
T
j ð34Þ
and for p 6¼ 0, let
NðpÞ ¼ fm 2 U jP mp ¼ 0g ð35Þ

(note that Nð0Þ ¼ U ). With the above notations, (32) can be written as
ut ¼ F kðD2u;DuÞ in RN � ½0; T Þ; ð36Þ

where
F kðA; pÞ ¼ inf
m2NðpÞ

ftrace½AP m�g:
Finally, Soner and Touzi have proved the equivalence between the two definition (32) and (36):

Proposition A.1 [28]. For any p 2 RN , p 6¼ 0, and symmetric matrix A 2 RN�N , the two operators F and bF
coincide, i.e.
F kðA; pÞ ¼ bF kðA; pÞ:

We just recall that (36) corresponds to a dynamic programming equation for a stochastic control problem

as it has been proved in [28].
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